研究工作重点聚焦锂(钠)离子电池、锂硫电池、超级电容器和全固态电池的器件及关键材料,开展以储能和能量转化为导向的功能材料领域的应用基础研究。
化工热力学;
化工安全与环保;
Chemical Engineering Thermodynamics;
中国电工技术学会超级电容器及储能技术专家委员会委员;
碳-石墨材料专业委员会委员;
《化学工业与工程》期刊编委
负责及参加国家863项目3项,国家自然科学基金2项以及天津市科技支撑及重点项目4项。曾获得2005年度教育部提名国家自然科学奖二等奖;
2024年度中国化工学会科学技术奖二等奖。课题组拥有功能碳材料相关的多项相关产业化技术;
出版碳材料中英文专著2本,授权发明专利40余项;
发表高水平学术论文100与篇。
基于软炭的兆瓦时级锂离子电池储能系统;
高性能锂硫电池;
大容量高倍率超级电容器储能;
石油基锂电负极材料;
超级电容器/锂离子电池混合储能系统;
1. Competitive coordination of Na+ to “rescue” lithium-ion mobility in zwitterionic quasi-solid electrolytes for lithium metal batteries. Journal of Energy Chemistry 2024, doi:10.1016/j.jechem.2024.12.025
2. -C≡N functionalizing Polycarbonate-based all-solid-state polymer electrolyte compatible to high-voltage cathodes. Journal of Energy Chemistry 2024, doi:10.1016/j.jechem.2024.06.052
3. In Situ Polymerized Quasi-Solid Electrolytes Compounded with Ionic Liquid Empowering Long-Life Cycling of 4.45 V Lithium-Metal Battery. ACS Applied materials & interfaces 2024, 16, 16, 20430-20442
4. In Situ Polymerization of Fluorinated Polyacrylate Copolymer Solid Electrolytes for High-Voltage Lithium Metal Batteries at Room Temperature. Macromolecules 2023, 56: 1077-1085
5. Quasi-Solid Polymer Electrolyte with Multiple Lithium-Ion Transport Pathways by In Situ Thermal-Initiating Polymerization. ACS Applied Materials & Interfaces 2023, 15: 8128-8137.
6. Bridging Li7La3Zr2O12 Nanofibers with Poly(ethylene oxide) by Coordination Bonds to Enhance the Cycling Stability of All-Solid-State Lithium Metal batteries. ACS Applied Materials & Interfaces 2022, 14: 5346-5354.
7. Co-contribution of quenching and nanocrystallization on ionic-conductivity improvement of a composite electrolyte of polyethylene Oxide/Li7La3Zr2O12 nanofibers at 45 degrees C for all-solid-state Li metal batteries. Journal of Power Sources 2021, 496: 229843-229852.
8. LiPAA with Short-chain Anion Facilitating Li2Sx (x≤4) Reduction in Lean-electrolyte Lithium-sulfur Battery. Energy and Environmental Materials 2021, 5(3): 877-882.
9. CoB and BN composites enabling integrated adsorption/catalysis to polysulfides for inhibiting shuttle-effect in Li-S batteries. Journal of Energy Chemistry 2021, 59: 220-228.
10. Potassium-assisted carbonization of chlorobenzene in Ar/H2 to prepare porous carbon with low oxygen content for high withstanding voltage EDLCs. Carbon 2021, 172: 154-161.
11. Rational valence modulation of bimetallic carbide assisted by defect engineering to enhance polysulfide conversion for lithium-sulfur batteries. Journal of Materials Chemistry A 2020, 8, 18032-18042.
12. An “in situ templating” strategy towards mesoporous carbon for high-rate supercapacitor and high adsorption capacity on dye macromolecules, Carbon 2020, 164: 19-27.
13. Abundant Defects-Induced Interfaces Enabling Effective Anchoring for Polysulfides and Enhanced Kinetics in Lean Electrolyte Lithium Sulfur Batteries. ACS Applied Materials & Interfaces 2020, 11(50): 46767-46775.
14. 2016,Elsevier出版社,《Materials Science and Engineering on Carbon: Characterization》;
15. 2018,化工出版社,《沥青基碳材料》
研究生导师类型 |
学术型硕导,专业型硕导,专业型博导 |
学术型硕士招生学科 |
081702化学工艺 |
学术型硕士招生研究方向 |
00不区分研究方向 |
专业型硕士招生学科 |
085600材料与化工(专业学位) |
专业型硕士招生研究方向 |
02化学工艺 |
学术型博士招生学科 |
无 |
专业型博士招生学科 |
085800能源动力,085600材料与化工 |